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Abstract 

This paper proposes a cumulant (higher-order statistics) based mean-square-error (MSE) criterion for the design of 
Wiener filters when both the given wide-sense stationary random signal x(n) and the desired signal d(n) are non-Gaussian 
and contaminated by Gaussian noise sources. It is theoretically shown that the designed Wiener filter associated with the 
proposed criterion is identical to the conventional correlation (second-order statistics) based Wiener filter as if both x(n) 
and d(n) were noise-free measurements. As the latter, the former can also be obtained by solving a cumulant-based 
Wiener-Hopf equation associated with a (cumulant-based) orthogonality principle. Then a generalized cumulant 
projection theorem is proposed which includes the projection of cumulants to correlations associated with the proposed 
cumulant-based MSE criterion and that associated with Delopoulos and Giannakis’ cumulant-based MSE criterion as 
special cases. Moreover, the proposed cumulant-based MSE criterion and Delopoulos and Giannakis’ cumulant-based 
MSE criterion are equivalent for cumulant order M = 3. Some simulation results for system identification and time delay 
estimation are then provided to demonstrate the good performance of the proposed cumulant-based Wiener filter. 
Finally, we draw some conclusions. 

Zusammenfassung 

Wir schlagen fi,ir den Entwurf von Wiener-Filtern ein Kumulanten(Statistiken hiiherer Ordnung)-basiertes mittleres 
quadratisches Fehlerkriterium (mean-square-error, MSE) fi.ir den Fall vor, da13 das gegebene, im weiten Sinne stationgre 
Zufallssignal x(n) und das gewiinschte Signal d(n) beide nicht GauD-verteilt sind und durch GauO-Rauschquellen gestijrt 
sind. Es wird theoretisch gezeigt, dafi das mit dem vorgeschlagenen Kriterium entworfene Wiener-Filter identisch ist mit 
dem konventionellen Korrelations(Statistiken zweiter Ordnung)-basierten Wiener-Filter, wenn sowohl x(n) als such d(n) 
rauschfreie Messungen sind. Wie im letzten Fall, kann such der vorhergehende Fall durch L&en einer Kumulanten- 
basierten Wiener-Hopf-Gleichung, verbunden mit einem (Kumulanten-basierten) Orthogonalitlitsprinzip, erzielt wer- 
den. Sodann wird ein verallgemeinertes Kumulanten-Projektionstheorem vorgeschlagen, welches die Projektion von 
Kumulanten auf Korrelationen, sowohl auf der Basis des vorgeschlagenen Kumulanten-basierten MSE-Kriteriums, als 
such in Verbindung mit dem Kumulanten-basierten MSE-Kriterium von Delopoulos und Giannakis als Spezialfdle, 
einschliel3t. DarEberhinaus sind das vorgeschlagene Kumulanten-basierte MSE-Kriterium und das Kumulanten-basierte 
MSE-Kriterium von Delopoulos und Giannakis lquivalent fiir Kumulanten der Ordnung M = 3. Einige Simulations- 
ergebnisse zur Systemidentifikation und VerzGgerungszeit-Schgtzung werden gegeben, urn das gute Verhalten des vorge- 
schlagenen Kumulanten-basierten Wiener-Filter zu demonstrieren. AbschlieRend ziehen wir einige Schltifolgerungen. 
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Rbumi! 

Cet article propose un critere d’erreur aux moindres car& base sur un cumulant (statistiques d’ordres suptrieurs) pour 
la calibration de filtres de Wiener quand, a la fois le signal aleatoire stationaire au sens large donne x(n) et le signal desire 
d(n) sont non-Gaussien et corrompus par des sources de bruit Gaussien. I1 est theoriquement dimontrt que le filtre de 
Wiener ainsi calibre, associe avec le critere propose, est identique a la correlation conventionnelle (statistiques de 
second-ordre) base sur un filtre de Wiener comme si a la fois x(n) et d(n) Ctaient des mesures sans bruit. Ainsi que ce 
dernier, le premier peut Cgalement Ctre obtenu en resolvant un cumulant base sur l’tquation de Wiener-Hopf, associe 
a un principe d’orthogonalitt (base sur un cumulant). Ainsi, un theorbme generalist: de projection de cumulant est 
propose qui inclu la projection de cumulants a des correlations en association avec le critere MSE propose, base sur un 
cumulant, avec comme cas particulier le cumulant de Delopoulos and Giannakis. De plus, le crittre MSE propose base 
sur un cumulant et le cumulant de Delopoulos and Giannakis sont equivalents pour un ordre de cumulant M = 3. 
Quelques rtsultats de simulation pour l’identification de systeme et l’estimation de retard sont ensuite proposes afin de 
demontrer les bonnes performances du filtre de Wiener propose base sur un cumulant. Finalement, now tirons quelques 
conclusions. 

Keywords: Wiener filter; Mean-square-error (MSE) criterion; Cumulant 

1. Introduction 

The well-known Wiener filter [S, 9,161 has widely been used in various correlation-based statistical signal 
processing areas such as system identification, predictive deconvolution, channel equalization, noise cancel- 
lation and suppression, echo cancellation and time delay estimation. Assuming that x(n) is the given 
wide-sense stationary signal and d(n) is the desired signal, the conventional Wiener filter is based on the 
mean-square-error (MSE) criterion which leads to a correlation-based orthogonality principle, and its 
coefficients can be solved from the well-known Wiener-Hopf equation formed of autocorrelation function 
r&i) as well as cross correlation function r&). However, both r,,(i) and r&i) include noise correlations 
when x(n) is corrupted by additive noise. Therefore, the performance of the correlation-based Wiener filter is 
sensitive to additive noise no matter whether noise is Gaussian or not. 

Recently, higher-order (2 3) statistics (HOS) [ll, 12,14,15], known as cumulants, have been considered in 
various statistical signal processing areas where signal x(n) is non-Gaussian and contaminated by Gaussian 
noise, partly because cumulants of x(n) contain not only amplitude information but also phase information 
of x(n) and partly because all higher-order cumulants of x(n) are insensitive to Gaussian noise whose 
Mth-order cumulants are all equal to zero for M > 3. As a matter of fact, Mth-order cumulants of x(n) are 
insensitive to non-Gaussian noise as long as Mth-order cumulants of noise are equal to zero. 

Chi et al. [4,5] proposed two cumulant-based MSE criteria for the design of linear prediction error (LPE) 
filters. It was shown in [4,5] that the two cumulant-based MSE criteria are equivalent to the correlation- 
based MSE criterion as if x(n) were a noise-free non-Gaussian signal. Furthermore, the coefficients of the 
designed LPE filters associated with the two cumulant-based MSE criteria can be obtained by solving a set of 
symmetric Toeplitz linear equations to which the computationally efficient Levinson-Durbin recursion 
[8,9,16] can be applied. In this paper, we further propose a cumulant-based MSE criterion for the design of 
Wiener filters described in Theorem 1 below which is a generalization of one of the two cumulant-based MSE 
criteria reported in [4,5] for the design of LPE filters. Similar to the correlation-based Wiener filter, the 
proposed cumulant-based Wiener filter also leads to a cumulant-based orthogonality principle described in 
Theorem 2 below. Based on the cumulant-based orthogonality principle, the optimum cumulant-based 
Wiener filter can be obtained from the associated cumulant-based Wiener-Hopf equation and implemented 
by a lattice structure [16] following the well-known Levinson-Durbin recursion. 
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Delopoulos and Giannakis [6] proposed a projection operator which projects a third-order cumulant 
function to an autocorrelation function except for a scale factor. Based on the projection concept, De- 
lopoulos and Giannakis [6,7] proposed some cumulant-based MSE criteria for identification of linear 
systems. In this paper, we further extend the projection concept to a generalized projection concept described 
in Theorem 3 below which states that an Mth-order cumulant function can be projected to an mth-order 
cumulant function except for a scale factor where 2 < m < M. It will be shown that both Delopoulos and 
Giannakis’ cumulant-based MSE criterion [7] and the proposed cumulant-based MSE criterion are special 
cases of the generalized projection described in Theorem 3. Moreover, the latter is equivalent to the former 
[7] for cumulant order M = 3 and is computationally much more practical than the former for M 2 4. 

The new cumulant-based MSE criterion for the design of Wiener filters is presented in Section 2. Section 
3 presents the generalized projection concept. Then some simulation results for system identification and 
time delay estimation are provided in Section 4 to support the proposed cumulant-based Wiener filter. 
Finally, we draw some conclusions and provide a discussion in Section 5. 

2. A new cumulant-based MSE criterion for the design of Wiener filters 

Assume that x(n) and d(n), n = O,l, . . . , N - 1, are the given non-Gaussian noisy measurements generated 
from the following convolutional models (see the block diagram shown in Fig. l), respectively: 

x(n) = x&t) + WI(n), (Ia) 

x&r) = u(n) *s(n), (lb) 

and 

d(n) = d&r) + wz(n), (2a) 

d,(n) = x&r) * h(n), (2b) 

where x&r) and d&r) are the noise-free signals associated with x(n) and d(n), respectively, wl(n) and w2(n) are 
measurement noise sources, g(n) and h(n) are linear time-invariant (LTI) systems (with possibly nonminimum 
phase), and u(n) is the driving input to the system g(n). Let us make the following statistical assumptions for 
u(n), w,(n) and wz(n): 
(Al) u(n) is a real, zero-mean, stationary, independent identically distributed (Cd.), non-Gaussian driving 

input sequence with variance 0.’ and Mth-order (M > 3) cumulant yM. 
(A2) wl(n) and wz(n) are zero-mean Gaussian noise sequences which can be white or colored with unknown 

statistics. 
(A3) The driving input u(n) is statistically independent of w1 (n) and wz(n). 

Assume that the Wiener filter is an FIR filter, denoted v(n), with u(n) # 0 for p1 < n < p2, where p1 and 
p2 are integers. The conventional correlation-based Wiener filter is designed such that the MSE, denoted 
E[e’(n)], of the estimation error defined as 

e(n) = d(n) - x(n) * o(n) = d(n) - 2 u(i)x(n - i) 
i=p, 

(3) 

is minimum, where d(n) is the desired signal which need not satisfy the convolutional model given by (2). The 
coefficients of the conventional Wiener filter can be solved from the following well-known Wiener-Hopf 
equation C&9,16]: 

j$l rxx(i -j)v(j) = Id&h i = PI,P~ + 1, . . ..p2. (4) 
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Wienerfilter - 

x(n) 

Fig. 1. Block diagram for Wiener filtering. 

where r,,(i) denotes the autocorrelation function of x(n) and r&i) denotes the cross correlation function of 
d(n) and x(n). However, both r,,(i) and r&i) include noise correlations due to the additive Gaussian noise 
sources wl(n) and wz(n). 

For ease of later use, the error signal e(n) defined by (3) can be further expressed as 

e(n) = [d&r) + wz(n)] - [x&r) + wl(n)] *v(n) (see (la) and (2a)) 

= Cdf(4 - Xf(4 * 441 + Cw2(4 - WI(~) * WI 

= efk4 + w(n), (9 

where w(n) = w2(n) - WI(n) * u(n) is also a Gaussian noise sequence since w1 (n) and w2(n) are Gaussian by the 
assumption (A2) and 

ef(4 = dfb) - Xf(n) * 44 

= u(n) * g(n) * h(n) - u(n) * g(n) * v(n) (see (lb) and (2b)) 

= u(n) *f(n) (6) 

is the noise-free error signal in which 

f(n) = s(n) * [h(n) - 441. (7) 

Moreover, let Cum@‘)(xl(n + k,), x2(n + k,), . . . , xM(n + kM)) denote the Mth-order joint cumulant func- 
tion of real stationary random processes (xi(n)}, i = 1,2, . . . , M. It can be shown [ll, 143 that if 
Xi(n) = u(n) *A(n), i = 1,2,. . . , M, where u(n) is the driving input under the assumption (Al) and A(n), 
i= 1,2 , . . . , M, are arbitrary LTI systems, then 

Cum’“‘(xl(n + kl),x2(n + k2), . . . ,X&I f k,)) = yy ~=~mf~(n + kl).fdn + kd+..fidn + k,). (8) 

Note that Cum(‘)(xl(n + kl),x2(n + k,)) = E[xl(n + kl)x2(n + k2)] and y2 = 0,” for cumulant order 
M = 2. 

The new cumulant-based MSE criterion for the design of Wiener filters is described in the following 
theorem. 
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Theorem 1. Assume that x(n) and d(n) are the noisy signals given by (1) and (2), respectively, under the 
assumptions (Al)-(A3). Let u(n) be the proposed Wienerjilter associated with the error signal e(n) dejined by (3) 
and i?(n) be the optimum Wiener jilter based on minimizing the following criterion: 

J~(u(n)) = 
i 

5 CumcM)(e(n),e(n), x(n - k), . . . ,x(n - k)) 
I 

2 2 JM(i?(n)), (9) 
k=-co 

where M 2 3. Then ii(n) is identical to the conventional correlation-based Wiener jilter associated with the 
MSE criterion E[ef (n)] (i.e., SNR = co), as long as yMGGY_ 2(O) # 0, where 

G,(o) p f gm(n)e-jwn. 
ll=-m 

(10) 

Proof. The correlation-based Wiener filter for the noise-free case is designed by minimizing 

m 
E[ef(n)l = 0,’ 1 f2(n) (see (6) and (8)). (11) 

On the other hand, the objective function JM given by (9) can be simplified as follows: 

Jy = 5 2 CumcM)(e,(n), ef(n), xf(n - k), . . . , xr(n - k)) (see (A2)) 
k=-m 

YM 2 f2(n)sM-2(n - 4 n=-cc 11 2 (see (6), (lb) and (8)) 
f 9 

k=-cc 

Md2(kl~. { f 
?I=-03 

f2b,) 

(see (10)) 

= { ~nrG~272. (EC&n)1 >’ (see (11)). (12) 

One can see, from (12), that minimizing JM is equivalent to minimizing E[ef(n)] when yM. G,_,(O) # 0. 
Therefore, the optimum t?(n) associated with JM is identical to the conventional Wiener filter as if 
SNR=cc. l-J 

It is well known that the Wiener-Hopf (linear) equation used to solve for correlation-based Wiener filter 
coefficients can be easily obtained by the orthogonality principle [8,9,16]. Analogously, one can also obtain 
the Wiener-Hopf equation associated with the proposed criterion Jw using a cumulant-based orthogonality 
principle described in the following theorem. 

Theorem 2 (Cumulant-based orthogonality principle). The optimum Wienerfilter output e(n) associated with 
Ju gioen by (9) satisfies 

k=.feCumfM) (e(n),x(n - i),x(n - k), . . . , x(n-k))=O, i=pI,pI + l,..., p2, (13) 
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with the minimum of Jw given by 

J M,min = , j, Cum ‘“‘(e(n),d(n),x(n - k), . . . ,x(n - k)) 2. (14) 

See Appendix A for the proof of this theorem. 
By the cumulant-based orthogonality principle described in Theorem 2, the Wiener-Hopf equation 

associated with JM can be derived as follows: 

,j, Cum ‘“‘(e(n),x(n - i),x(n - k), . . . ,x(n - k)) (see (13)) 

= kj_cum “?d(n) - 2 v*( j)x(n - j),x(n - i),x(n - k), . . . ,x(n - k)) 
j=pl 

‘“‘(d(n), x(n - i), x(n - k), . . . ,x(n - k)) 

- j$, u^(j).k$mCum (“)(~(n - j),x(n - i),x(n - k), . . . ,x(11 - k)) 

(“‘(d(n),x(n - i), x(n - k), . . . , x(n - k)) 

- j$,B(i). f Cum ‘“‘(x(n),x(n-i+j),x(n-k+j),...,x(n-k+j)) 
k=-m 

= kzf*Cum 
(“)(d(n), x(n - i),x(n - k), . . . , x(n - k)) 

- j$,fi(j). 2 Cum ‘“‘(x(n),x(n - i + j),x(n - k), . . . ,x(n - k)) 
k=-a, 

= cdX(i) - 5 6( j)c,,(i -j) = 0, i = PI,PI + 1, . . ..p2. 

j=P, 

where 

c,,(i) 4 f CumcM’(x(n),x(n - i),x(n - k), . . . ,x(n - k)) 
k=-cc 

and 

cdX(i) P f CumcM’(d(n), x(n - i), x(n - k), . . . , x(n - k)). 
k=-cc 

From (15), one can obtain the cumulant-based Wiener-Hopf (linear) equation as follows: 

j$,c,,(i -.Mj) = k(i), i = ~,PI + L...,P2 

or, in matrix form, 

(15) 

Wa) 

VW 

(17) 

cd = cdx, (18) 
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where 6 = [C(pl),u^(pl + l), . . . . V^(k)]T, cdx = kdx(PI)?~dx(p1 + I), ~~~~Cdx(~2)lT? and 

r Gx (0) 4- 1) . . . 
G&l - Pz) 1 

c, = c,,(l) 1 i c.x, (0) ... Lh - P2 + 1) 

cxx(-PI + P2) cxx(-PI + P2 - 1) ... cxx (0) 
1 

is a symmetric Toeplitz matrix because c,,(i) = c,,( -i) (see (16a)). 
Moreover, the minimum value of the objective function JM follows directly from Theorem 2 as 

J M,min = kzz, Cum 

i 

2 ‘“)(e(n),d(n),x(x - k), . . . , x(n - k)) 
I 

(see (14)) 

= ,Q i 

PZ 2 

umcM)(d(n) - 1 fi(i)x(n - i), d(n), x(n - k), . . . , x(n - k)) 

i=p, 

2 ‘M’(x(n - i),d(n),x(n - k), . . . ,x(n - k)) 

2 = (see (16b)), 

(19) 

(20) 

where 

cdd(i) 4 f Cum qqn), d(n - i),x(n - k), , . . ) x(n - k)). (21) 
k=-m 

Tables 1 and 2 summarize the correlation-based Wiener filter and the proposed cumulant-based Wiener 
filter, respectively, One can see, from these two tables, that all the correlation-based equations associated 
with the conventional Wiener filter can be mapped, respectively, to the corresponding cumulant-based 
counterparts associated with the proposed cumulant-based Wiener filter. This indicates that the proposed 
cumulant-based Wiener filter is closely related to the correlation-based Wiener filter, and the relationship 
between them will be further discussed in the next section. 

In practice, both c,,(i) and cd,.(i) given by (16a) and (16b), respectively, can be estimated from data as 

&x2 
&(i) = C Cum(“)(x(n),x(n - i),x(n - k), . . . ,x(n - k)) (22a) 

k=L, 

and 

Kd,, 
2dx(i) = c bmcM’(d(n), x(n - i), x(n - k), . . . , x(n - k)), GW 

respectively, where &mCM)(xl (n + kl ), xz(n + k,), . . . , xM(n + kM)) denotes the biased Mth-order sample 
cumulant sequence of stationary random processes {x&r)>, i = 1,2, . . . , A4 [ll, 141 and Kxxl, Kxx2, &xl as 
well as Kdx2 are integers which must be chosen such that &,,(i) and d,(i) approximate c,,(i) and c&i), 
respectively. 
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Table 1 Table 2 
Summary of the correlation-based Wiener filter Summary of the proposed cumulant-based Wiener filter 

MSE criterion 

min E[e*(n)] 

Cumulant-based MSE criterion 

min JM = { 2tz _ Ic CumcM’(e(n),e(n), x(n - k), , x(n - k)))2 

Orthogonality principle 

E[e(n)x(n - i)] = 0, i = pI,pI + 1, . . . . pz 

min{E[e’(n)]} = E[e(n)d(n)] 

Wiener---Hopf equation 

Z,P’,,rxx(i-j)8(j)=rdx(i), i =pl,pl + l,...,p, 

r,,(i) = E[x(n)x(n - i)] 

rdX(i) = E[d(n)x(n - i)] 

Cumulant-based orthogonality principle 

x,“= _ I Cum’“‘(e(n), x(n - i), x(n - k), ,x(n - k)) = 0, 

i = pI,pI + l,...,p, 

3 M.,,,,” = {xl= _ ~ Cum’“‘(e(n),d(n),x(n - k), . . . ,x(n - k))}’ 

Cumulant-based Wiener-Hopf equation 

xy5P, c,,(i - j)t( j) = cAi), i = pI,pI + 1, . . ..p2 

c,,(i) = x;= z CumcM’(x(n),x(n - i), x(n - k), ,x(n - k)) 

cd&) = x,“=. D Cum(“‘(d(n),x(n - i), x(n - k), , x(n - k)) 

How to choose the values of K,,r , Kxr., Kdxl and KdxZ for the case that both g(n) and h(n) are FIR filters is 
presented in the following fact which is shown in Appendix B. 

Fact 1. Assume that g(n) is an FIR filter of length L and h(n) is also an FIR filter with h(n) # 0 for 
L1 < n < Lz. The choices ofKxxl and KxxZ and the choices ofKdrI and KdxZ are described in (Fl) and (F2), 
respectively, as follows. 
(Fl) When max{ - L + 1, -L + 1 + i) 6 min{L - 1, L - 1 + i}, c*,,(i) is a consistent estimate for c,,(i) if 

K xxl and Kxx2 are chosen such that 

K xxl G max{ -L + 1, -L + 1 + i) (23a) 

and 

K xx2 2 min{L - l,L - 1 + i}, (23b) 

respectively; otherwise, c,,(i) = 0 which implies the associated t,,(i) = 0. 
(F2) When max{ -L + 1 + L,, -L + 1 + i} < min{L - 1 + L2, L - 1 + i}, &(i) is a consistent estimate 

for c,,,.(i) if Kdxl and Kdx2 are chosen such that 

K,,,Gmax{-L+l+L,,-L+l+i} (24a) 

Kdx2 2 min{L - 1 + L2, L - 1 + i}, 

respectively; otherwise, c&i) = 0 which implies the associated &.(i) = 0. 

(24b) 

Note that the choices of Kxxl and Kxxz and the choices of Kdxl and Kdx2 can be different for computing each 
t,,(i) and each &Ji), respectively. Notice that when L is unknown, it can be replaced with a larger value 
determined by prior information about g(n). Similarly, when L1 and L2 are unknown, the former can be 
replaced with a smaller value and the latter can be replaced by a larger value determined by their prior 
information about h(n) as well. Doing this will also increase the bias and variance of c*,,(i) and &(i) and thus 
lead to some performance degradation of the proposed cumulant-based Wiener filter. Recall that the Wiener 
filter was assumed to be an FIR filter. Therefore the designed Wiener filter is actually an approximation to 
the FIR system h(n), but when the length of h(n) is very large, it may not be a good approximation to h(n) for 
limited finite data. However, how to choose the values of Kxxl, Kxx2, Kdxl and Kdx2 when g(n) is an IIR 
system or when the length of g(n) is large will be discussed later. 
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Two remarks regarding the proposed cumulant-based Wiener filter are described as follows. 

31 

W) 

W) 

The Fourier transform of c,Ji) given by (16a) can be shown to be (see Appendix C) 

bi 
C,,(O) = C c,.(i)e-j”’ = yYG~-~(0)~lG1(412, (25) 

which implies that the sequence c,,(i) is positive definite if yMGMe2(0) > 0 and negative definite if 
yMGM_,(0) < 0. Thus, c,,(i) = c,,( -i) can be thought of as a legitimate correlation sequence if 
yMGM _ Z (0) > 0 and the matrix C, given by (19) is therefore a legitimate correlation matrix. Accordingly, 
the proposed cumulant-based Wiener filter, like the correlation-based Wiener filter, can be imple- 
mented by a lattic structure [16] associated with the well-known computationally efficient Levin- 
son-Durbin recursion. This means that the computational complexity of the proposed cumulant-based 
Wiener filter is the same as that of the correlation-based Wiener filter, except for some additional 
computations for obtaining E,,(i) and t&i), which depend on the choices of Kxxl , I&, Kdxl as well 

as Kdxl. 
When h(n) = 6(n + l), i.e., d&t) = xf(n + 1) (see (2b)), the proposed cumulant-based Wiener filter v(n) 
reduces to a cumulant-based linear prediction (LP) filter proposed by Chi et al. [4,5]. Therefore, the 
associated prediction error signal e(n) is also equivalent to the output signal of the cumulant-based LPE 
filter reported in [4,5] with the input being x(n). 

3. Projection of higher-order cumulants 

In order to provide a further insight into the proposed cumulant-based Wiener filter, let us present 
a generalized projection concept as follows. 

Theorem 3 (Generalized projection). Let yi(n) = xf(n) * hi(n), i = 1,2, . . . , m, where x,(n) is the non-Gaussian 
noise-free signal given by (lb) under the assumption (Al) and hi(n), i = 1,2, . . . , m, are arbitrary LTZ systems. 
Then 

Cum Tyltn + h),y& + M, . . ..hdn + kd,xdn + k,+l), . . ..G + L+I)) 

= ~d-k-m(O) *Cum(“)(y,(n + kl),y2(n + W, .-. ,Y m (n + k m 

Ym 
)I 

and 

?yl(n + k),yAn + W, . . . ,ym(n + k,), 

M 

xf(n + k,+l), . . ..xf(n + kM)).exp -j C oiki 
i=m+l 

YM ,;b+ 1 Gl(ai) 
= *Cum(“)h(n + kl),yh + M,...,y m (n + k 1) m 9 

Ym 

(26) 

(27) 

with CE ,,,+ r Wi = 0, where 2 < m < M and G,(o) is dejned by (10). 

See Appendix D for the proof of this theorem. 



32 C.-C. Feng, C.-Y. Chi / Signal Processing 54 (1996) 23-48 

Theorem 3 indicates that an Mth-order cumulant function can be projected to an mth-order (2 6 m < M) 
cumulant function except for a scale factor. Notice that both (26) and (27) are generalizations of the 
projection operator proposed by Delopoulos and Giannakis [6], which projects a third-order cumulant 
function to an autocorrelation function except for a scale factor. 

If m = 2 and y,(n + k,) = y,(n + k2) = ef(n) in (26) where e&z) is defined by (6), then the square of the 
left-hand side of (26) is equivalent to the proposed criterion JM given by (9) because of the assumption (A2). 
Moreover, by letting m = 2, yi(n + k,) = ef(n) and y,(n + k,) = X&I - i) in (26), Eq. (13) in Theorem 2 can 
be simplified as follows: 

k-jmcum (“‘(e(n),x(n - i), x(n - k), . . . , x(n - k)) 

= kE*- ‘“)(ef(n),xf(n - i), xf(n - k), . . . ,X&I - k)) 

= YMGM-~(O) 

2 . E[e,(n)x,(n - i)] = 0 (see (26)) 
0” 

or 

E[e,(n)x& - i)] = 0 

if Y~G~_~(O) # 0. This implies that the cumulant-based orthogonality principle is equivalent to the 
correlation-based orthogonality principle [S, 9,163 associated with the noise-free case. Similarly, c,,(i) and 
c&i) given by (16a) and (16b), respectively, can be shown to be 

c,,(i) = 
YYGM- 20 

. E [xfWf(n - 91 = YMGM-,(O) 
2 

vu 
u,” . r+,(i) 

and 

cdi) = 
Y&-~(O) 

*ECdfwxf(n - iI1 = 
Y&M - 2(O) 

2 
cu 

u,” . rdfxfG), 

@a) 

W-4 

respectively. Note that the square of the unknown scale factor yicrGM_ z(0)/uz in (28a) and (28b) is also the 
scale factor of the key relationship (see (12)) between the proposed cumulant-based MSE criterion Jy and the 
correlation-based MSE criterion. Thus, substituting (28a) and (28b) into (17) yields 

5 r,,,,(i -j)C(j) = r+,(i), i = pl,pl + 1, . . ..h (29) 
j=P, 

which also implies that the designed cumulant-based Wiener filter is not sensitive to the value of 
Y~G~_~(O)/~~ which turns out to disappear in (29). Once again, this states that the cumulant-based 
Wiener-Hopf equation given by (17) for finite SNR is equivalent to the correlation-based Wiener-Hopf 
equation given by (4) for SNR = co, and therefore the obtained cumulant-based Wiener filter G(n) is identical 
to the correlation-based Wiener filter associated with the noise-free case. 

Recently, Delopoulos and Giannakis [7] proposed a cumulant-based input-output system identification 
method based on the following criterion: 

J’DG’ = 
M f “‘k fcm 

CumcM)(e(n) e(n) x(n + k3), . . . ,x(n + kM)).exp 
’ ’ 

k3=-m M 

{ -.i is ~ikc)~ (30) 
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where CE, Oi = 0. One can see, from Theorem 3, that Delopoulos and Giannakis’ criterion JsG’ given by 
(30) is equivalent to the left-hand side of (27) with m = 2 and y, (n + k,) = yz(n + k,) = e&), and therefore is 
also a cumulant-based MSE criterion. Furthermore, one can observe that the proposed criterion J3 is 
equivalent to Delopoulos and Giannakis’ criterion J, (DG) because (26) associated with the former is the same 
as (27) associated with the latter for m = 2 and M = 3. However, the proposed criterion Jy uses only 
a ‘one-dimensional slice’ of Mth-order cross cumulants (see (9)) while Delopoulos and Giannakis’ criterion 
JgG’ uses an ‘(M - 2)-dimensional slice’ of Mth-order cross cumulants (see (30)). Therefore, the proposed 
criterion Jv is computationally much more practical than Delopoulos and Giannakis’ criterion JgG’ for 
M 2 4. 

4. Simulation results 

In this section, the proposed criterion for the design of Wiener filters is to be applied to the input-output 
moving-average (MA) system identification and time delay estimation through simulation in order to 
demonstrate the good performance of the proposed cumulant-based Wiener filter. 

4.1. System identi’cation 

The proposed cumulant-based Wiener filter u(n) was used to identify an LTI system h(n). In the following 
two examples, the driving input u(n) used was a zero-mean, exponentially distributed, i.i.d. random sequence 
with variance 0.” = 1, skewness y3 = 2 and kurtosis y4 = 6. The system g(n) = 6(n) was assumed (L = 1) for 
which y3G1(0) = y3 # 0 and y4G2(0) = y4 # 0. A second-order MA system h(n) with transfer function 

H(z) = h(0) + h(l)z-’ + /z(~)z-~ = 1 - 1.82-l + O.~Z-~, (31) 

whose zeros are 0.2597 and 1.5403 (i.e., nonminimum-phase system), was used. The optimum cumulant-based 
Wiener filter i?(n) was obtained using the proposed criterion J3 as well as J4, and the filter coefficients 
were solved from (17) in which c,,(i) and c&i) were replaced by &,,(i) and 6&i) given by (22a) 
and (22b), respectively, with Kxxl = max{-L + 1, -L + 1 + i}, Kxx2 = min{L - l,L - 1 + i}, Kdxl = 
max{ -L + 1 + L,, -L + 1 + i}, and Kdx2 = min{L - 1 + L2, L - 1 + i} (see (23a), (23b), (24a) and 
(24b)). Note that L = 1, p1 = L1 = 0 and p2 = L2 = 2 were used in the two examples. Thirty independent 
runs were performed for each simulation example with the same signal-to-noise ratio (SNR) defined as 

SNR = mm 
E[wf(n)] = ECw$)] bee (la) and (2a)) (32) 

associated with the noisy data x(n) and d(n). For comparison, the correlation-based Wiener filter [8,9,16] 
was also employed to estimate h(n) with the same simulation data. 

Example 1 (Uncorrelated white noise sources). The noise sources w1 (n) and w2(n) were assumed to be 
zero-mean i.i.d. Gaussian random sequences and statistically uncorrelated. Table 3 shows mean + standard 
deviation of the obtained 30 independent estimates i?(n) for data length N = 4000, and SNR = 40, 10, 5 and 
0 dB. One can see, from Table 3, that when SNR is large (SNR = 40 dB), mean values of the estimates 0(n) are 
very close to the true MA parameters h(n) for all the criteria. However, when SNR is low (SNR = 0 dB), 
biases of the estimates i?(n) associated with the -MSE criterion are quite large in spite of small standard 
deviations. On the other hand, the proposed cumulant-based Wiener filter keeps both bias and standard 
deviation small. 



34 C.-C, Feng, C.-Y. Chi / Signal Processing 54 (1996) 23-48 

Table 3 
Simulation results of Example 1. The noise sources are white Gaussian and uncorrelated with each other, and data length N = 4000. 
True parameters: h(O) = 1.0, h(1) = - 1.8, h(2) = 0.4 

Estimated values (mean + standard deviation) 

Criterion SNR=4OdB SNR = 10 dB SNR=5dB SNR =OdB 

MSE v*(O) 1.0008 + 0.0007 0.9129 k 0.0168 0.7653 + 0.0246 0.5046 f 0.0303 
o*(l) - 1.7996 k 0.0007 - 1.6383 + 0.0128 - 1.3710 + 0.0241 - 0.9034 + 0.0387 
a(2) 0.3999 + 0.0006 0.3672 k 0.0117 0.3096 f 0.0196 0.2056 + 0.0289 

J3 W) 1.0092 f 0.0444 1.0116 + 0.0467 1.0148 + 0.0518 1.0258 f 0.0660 
v*(l) - 1.8020 k 0.0281 - 1.8021 +_ 0.0307 - 1.8044 + 0.0431 - 1.8148 + 0.0892 
v*(2) 0.4050 f 0.0439 0.4099 + 0.0453 0.4154 k 0.0522 0.4295 + 0.0765 

54 v*(O) 1.0090 + 0.0771 1.0145 + 0.0807 1.0179 + 0.0932 1.0204 + 0.1376 
v*(l) - 1.7990 + 0.0396 - 1.7986 + 0.0489 - 1.7979 * 0.0680 - 1.7933 f 0.1255 
a(2) 0.4043 + 0.0692 0.4096 f 0.0789 0.4129 + 0.0963 0.4147 * 0.1457 

Table 4 
Simulation results of Example 2. The noise sources are colored Gaussian and uncorrelated with each other, and data length N = 4000. 
True parameters: h(0) = 1.0, h(1) = - 1.8, h(2) = 0.4 

Estimated values (mean + standard deviation) 

Criterion SNR =4OdB SNR = 10 dB SNR=5dB SNR=OdB 

MSE v*(O) 1.0001 + 0.0008 0.8465 k 0.0179 0.6202 f 0.0252 0.3058 f 0.0315 
v^(l) - 1.7996 f 0.0008 - 1.5900 + 0.0172 - 1.2825 k 0.0271 - 0.8295 + 0.0354 
C(2) 0.3998 * 0.0007 0.2975 + 0.0115 0.1596 + 0.0197 0.0017 * 0.0300 

J3 O(O) 1.0092 + 0.0445 1.0133 f 0.0490 1.0185 + 0.0572 1.0324 k 0.0790 
v”(l) - 1.8020 f 0.0281 - 1.8031 f 0.0347 - 1.8054 + 0.0493 - 1.8105 5 0.0924 
C(2) 0.4049 + 0.0439 0.4078 f. 0.0460 0.4114 f 0.0529 0.4187 + 0.0770 

54 v*(O) 1.0090 + 0.0772 1.0155 f 0.0841 1.0216 + 0.0971 1.0325 L- 0.1371 
C(l) - 1.7991 f 0.0397 - 1.8024 + 0.0521 - 1.8052 + 0.0728 - 1.8062 f 0.1296 
v*(2) 0.4042 f 0.0692 0.4082 + 0.0794 0.4106 + 0.0984 0.4096 + 0.1618 

Example 2 (Uncorrelated colored noise sources). The noise source w1 (n) as well as w*(n) used was generated 
from a first-order highpass FIR filter with coefficients { 1, - 0.8) driven by a white Gaussian noise sequence, 
respectively, and wl(n) and wz(n) were statistically uncorrelated. Table 4 shows mean + standard deviation 
of the 30 independent estimates 6(n) obtained for N = 4000, and SNR = 40,10,5 and 0 dB. Again, when SNR 
is large (SNR = 40 dB), mean values of the estimates v*(n) are very close to the true MA parameters h(n) for all 
the criteria. When SNR is low (SNR = 0 dB), biases of the estimates t?(n) associated with the MSE criterion 
are much larger than those associated with the proposed criterion J3 as well as J4 although standard 
deviations for the former (M,SE) are smaller than those for the latter (J3 and J4). Moreover, from Tables 
3 and 4, one can observe that the performance of the correlation-based Wiener filter for the colored Gaussian 
noise sources is worse than that for the white Gaussian noise sources for this case. However, the performance 
of the proposed cumulant-based Wiener filter is insensitive to Gaussian noise sources no matter whether 
noise sources are white or colored. 
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4.2. Time delay estimation [l-3,10,13,17] 

Assume that x(n) and d(n) are two spatially separated sensor measurements that satisfy 

x(n) = xr(n) + w(n) 

and 

(33) 

d(n) = x& - D) + w&r), (34) 

respectively, where x&r) is an unknown signal and D is an unknown time delay. Note that d(n) given by (34) is 
a special case of (2) with h(n) = 6(n - D). The cumulant-based Wiener filter c(n) can be used to estimate the 
time delay D with pJ = -p and p2 = p, where p is the largest possible time delay one can expect. A time delay 
estimate, denoted D, can then be determined to be the index associated with $(I@ = max{v*(n), -p < n < p} 

assuming that D is an integer. However, when the time delay D is not an integer, one can estimate D by 
applying sampling interpolation formula [2,3] to the obtained cumulant-based Wiener filter t?(n). 

Example 3. The driving input u(n) used was the same as that used in Example 1, and the unknown signal 
x&r) = u(n) (i.e., g(n) = 6( n )) was used to generate measurements x(n) and d(n) for data length N = 4000 and 
time delay D = 8. The noise source wr(n) was assumed to be a colored Gaussian sequence generated from 
a first-order MA system with coefficients (1,O.S) driven by a white Gaussian noise sequence, and the other 
noise source w2(n) = wr(n - 3) (i.e., sensor noise sources were spatially coherent and colored Gaussian). The 
optimum cumulant-based Wiener filter t?(n) was also obtained by solving (17) with Kxxl, Kxx2, Kdxl as well as 
KdXz chosen in the same way as in Example 1. Note that L = 1, p1 = Lr = -p, and p2 = L2 = p were used in 
the example. Thirty independent runs were performed for p = 30, and SNR = 0 dB and SNR = - 5 dB. For 
comparison, the conventional Wiener-filter-based method proposed by Chan et al. [2], the parametric 
bispectrum method proposed by Nikias and Pan [13] and the cumulant-based time delay parameter 
estimation (CUM-TDPE) method proposed by Tugnait [17] were also employed to estimate D with the 
same simulation data. Note that Nikias and Pan’s parametric bispectrum method estimates the time delay 
D by solving a set of overdetermined linear equations [13] formed of third-order cumulants and cross 
cumulants, and Tugnait’s CUM-TDPE method [17] is a fourth-order cumulant extension of Nikias and 
Pan’s bispectrum method. 

Figs. 2 and 3 show the 30 independent estimates c(n) obtained for SNR = 0 dB and SNR = - 5 dB, 
respectively, associated with the Chan et al. Wiener-filter-based method, Nikias and Pan’s parametric 
bispectrum method, Tugnait’s CUM-TDPE method and the proposed Wiener-filter-based method for 
M = 3 as well as M = 4. From Fig. 2(a), one can see that all the estimates o*(n) approximate 
0.436(n - 3) + 0.57&n - 8) because both x&r) and w2(n) = wI(n - 3) were treated as signals with unknown 
time delay by the correlation-based Wiener filter although the variance is small. From Figs. 2(b)-(e), one can 
see that all the estimates c(n) approximate s(n - 8) except for a scale factor. The simulation results shown in 
Fig. 2 demonstrate that all the above HOS-based time delay estimation methods are effective for suppressing 
coherent and colored Gaussian noise sources for the case of SNR = 0 dB. Again, all the estimates t?(n) shown 
in Fig. 3(a) approximate 0.636(n - 3) + 0.37&n - 8) and fail to provide reliable estimates fi for 
SNR = -5 dB. From Figs. 3(b) and (c), one can see that all the estimates i?(n) associated with Nikias and 
Pan’s method approximate 0.326(n - 3) + 0.706(n - 8) and those associated with Tugnait’s CUM-TDPE 
method fail to provide reliable results for SNR = - 5 dB, respectively. However, all the estimates z?(n) shown 
in Fig. 3(d) as well as Fig. 3(e) approximate 6(n - 8) except for a scale factor for this case. The time delay due 
to coherent Gaussian noise sources is completely suppressed by the proposed method. The simulation results 
shown in Fig. 3 demonstrate that the proposed method is more robust than Nikias and Pan’s method and 
Tugnait’s method for the white signal case. Moreover, it is known [14] that sample cumulants and sample 
cross cumulants are consistent estimates but their variance increases with cumulant order. Therefore, the 
variance of Nikias and Pan’s method is smaller than the variance of Tugnait’s CUM-TDPE method, and the 
variance of the proposed method for M = 3 is also smaller than that for M = 4. 
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Fig. 2. Simulation results of Example 3 (N = 4000 and SNR = 0 dB). The true time delay is D = 8, the signal X&I) is white, the noise 
sources are spatially coherent and colored Gaussian. Thirty estimates G(n) for p = 30 shown in the figure were obtained using (a) the 
Chan et al. Wiener-filter-based method, (b) Nikias and Pan’s parametric bispectrum method. 
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Fig. 2. (c) Tugnait’s CUM-TDPE method and the proposed Wiener-filter-based method with (d) M = 3. 
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Fig. 2. (e) The proposed Wiener-filter-based method with M = 4. 
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Fig. 3. Simulation results of Example 3 (N = 4000 and SNR = - 5 dB). The true time delay is D = 8, the signal x&r) is white, the noise 
sources are spatially coherent and colored Gaussian. Thirty estimates i?(n) for p = 30 shown in the figure were obtained using (a) the 
Chan et al. Wiener-filter-based method. 
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Fig. 3. (b) Nikias and Pan’s parametric bispectrum method, (c) Tugnait’s CUM-TDPE method and the proposed Wiener-filter-based 
method. 
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5. Conclusions 

We have presented a cumulant-based MSE criterion .JM given by (9) for the design of Wiener filters. The 
designed cumulant-based Wiener filter with measurements corrupted by additive Gaussian noise sources was 
shown to be identical to the correlation-based Wiener filter with noise-free measurements (i.e., SNR = co) 
(see Theorem 1). Further, the proposed cumulant-based MSE criterion Jy leads to a cumulant-based 
orthogonality principle described in Theorem 2, and coefficients of the optimum cumulant-based Wiener 
filter can be solved from the associated cumulant-based Wiener-Hopf equation given by (17). Moreover, 
a generalized projection of Mth-order cumulants to mth-order cumulants (2 6 m < M) was presented in 
Theorem 3 to provide a further insight into the proposed cumulant-based Wiener filter. The proposed 
generalized projection theorem (Theorem 3) includes the projection of cumulants to correlations associated 
with the proposed cumulant-based MSE criterion and that associated with Delopoulos and Giannakis’ 
cumulant-based MSE criterion as special cases. Finally, some simulation results for system identification and 
time delay estimation were provided to support the good performance of the proposed cumulant-based 
Wiener filter. 

Recall that the proposed cumulant-based Wiener filter requires to compute t,.,,(i) and 2&i) (see (22a) and 
(22b)) needed by the cumulant-based Wiener-Hopf equation given by (17). How to choose the values of 

K Kxx2, xx13 KM and h-2 for computing &,,(i) and t&(i) was presented in Fact 1 in Section 2 for the case 
that g(n) is an FIR system of length L. However, when g(n) is an IIR system or when L is large, we suggest to 
preprocess measurements x(n) and d(n), respectively, by a whitening filter associated with x(n) such as an 
LPE filter, denoted h,(n), so that x(n) and d(n) can be replaced by the preprocessed signals 

Z(n) = x(n) * h,(n) (35) 

and 

2((n) = d(n) * h,(n), (36) 

respectively, for the design of cumulant-based Wiener filter. The reason for this is that Z(n) and d”((n) are now 
associated with the model shown in Fig. 1 (also see (1) and (2)) with g(n) replaced by 

s”(n) = s(n) * h,(n), (37) 

which usually has shorter length than g(n). Then the values of Kxxl , KXX2, Kdxl and Kdx associated with x”(n) 
and d”(n) can be properly chosen by Fact 1. We empirically found that the designed cumulant-based Wiener 
filter t?(n) using the prewhitened signals Z(n) and d(n) always leads to smaller bias and variance than that 
without using the prewhitening filter. However, it cannot be guaranteed that the performance of the designed 
cumulant-based Wiener filter with the foregoing prewhitening process is satisfactory all the time, especially 
when g(n) is a narrow-band system (its length is quite large) or when SNR is too low. We leave this as a future 
research topic. 

Appendix A. Proof of Theorem 2 

Let u = [u(pl),u(pl + l), . . . , o(p2)lT be any tap-weight vector, u’ be the tap-weight vector satisfying (13) 
and x(n) = [x(n - pi),x(n - p1 - l), . . . , x(n - p2)lT. Then the estimation error e(n) defined by (3) can be 
expressed as 

e(n) = d(n) - u%(n) 

= [d(n) - (ul)Tx(n)] + (ul - u)Tx(n) 

= e’(n) + (u* - u)~x(Tz), (A.11 



42 C.-C. Feng, C.-Y. Chi / SignaZ Processing 54 (1996) 23-48 

where 

e’(n) = d(n) - (ul)Tx(n) 

is the estimation error associated with u’. Now observe that 

2 (“)(e(n),e(n), x(n - k), . . . ,x(n - k)) (=e (9)) 

64.2) 

= *j_- 
i 

’ (“)(e’(n) + (ul - u)Tx(n), cl(n) + (u’ - u)~x(~), x(n - k), . . . , x(n - k)) (see (A.l)) 

= $mCum 
i 

‘“‘(e’(n) + 5 [u*(i) - u(i)]x(n - i), 
i=p, 

e’(n) + E [d(j) - u(j)]x(n -j),x(n - k), . . ..x(n - k)) 
I 

2 

.i=h 

= k=imcum 
i 

(“)(e*(n),e’(n),x(n - k), . . . ,x(n - k)) 

+ $ [u’(i) - u(i)]. f CumcM’ (x(n - i), e’(n),x(n - k), . . . , x(n - k)) 
i=p, k=-co 

+ f [d(j) - u(j)].k=fmCum(M)(eL(4,x(n - j),x(n - k), . . . ,x(n - k)) 
j=m 

+ z $J [d(i) - u(i)] [d-(j) - u( j)l 
i=p, j=p, 

.kxmcum 

2 ‘“‘(x(n - i),x(n -j),x(n - k), . . . ,x(n - k)) 

‘“‘(el(n), e’(n), x(n - k), . . . , x(n - k)) 

+ 5 fJ [u’(i) - u(i)] [u’(j) - u(j)] 
i=p, j=p, 

.k;ilmcum 2 (“)(x(n - i),x(n - j),x(n - k), . . . ,x(n - k)) (see (13)) 

‘“‘(el(n), e’(n),x(n - k), . . . ,x(11 - k)) 

+ g ff [u”(i) - u(i)] [u’(j) - u(j)] 
i=p, j=p, 
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Cum(“)(e”(n),e’(n),x(n - k), . . . ,x(n - k)) 

Pz P2 

+ 1 1 [u’(i) - Ml [u’(j) - u(j)1 
i=p, j=p, 

k=-a, 
f 8’-‘(k) . 

1 
.=z, s(n - i)s(n - j)}’ 

‘“‘(e’(4,e’(4,x(n - 4, . . ..x(n - 4) + yMk=~mgN-2(k) 
1 

.“j, ( iz* jp(i) - >I 
2 

u(i)] [u’(j) - ~(j)ls(n - i)s(n -A 

‘“)(e’(n), e’(n),x(n - k), . . . , x(n - k)) 

+ YYGM-~(O). f 2 [d(i) - u(i)]g(n -i) 2 

)i 

2 

“=-cc i=p, 

‘MG~~2(o).E[e&r)2] + Y,IJG~-~(O) f C(v* - v)Tg(n)12 ’ (see (12)), (A.3) 
n=--m 

where e:(n) is the noise-free error signal associated with e’(n) and g(n) = [g(n - pl),g(n - p1 - l), 

. . . ,g(n - p2)lT. Thus, JM given by (A.3) can be expressed as 

(A-4) 

One can see, from (A.4), that JM is minimized when u = u’ and thus the optimum Wiener filter 6(n) satisfies 
(13). Furthermore, the minimum value of Ju is given by 

JM,min = { Y”G~~2(o’~.{EI,:(n)2]~2 

= kj_cum i 2 (“)(e’(n), e’(n), x(n - k), . . . , x(n - k)) (see (12)) 

= kj?xCum 
i 

‘“‘(e-‘-(n),d(n) - f d(i)x(n - i),x(n - k), . . . ,x(n - k)) 2 
i=pl 

‘“‘(e’(n),d(n), x(n - k), . . . ,x(n - k)) 

‘“‘(eL(n), x(n - i), x(n - k), . . . , x(n - k)) 

’ ‘“‘(e’(n),d(n), x(n - k), . . . , x(n - k)) (see (13)), (4 

which is (14). 0 
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Appendix B. Proof of Fact 1 

B. I. Proof of (FI) 

The Mth-order cumulant CumcM)(x(n), x(n - i), x(n - k), . . . , x(n - k)) used in c,,(i) (see (16a)) can be 
expressed as 

CumcM)(x(n),x(n - i), x(n - k), . . . ,x(n - k)) 

= Cum(“)(x,(n + k), X&I + k - i), xf(n), . . . ,x&r)) (see (A2)) 

= yy f g(n + k)g(n + k - i)g”-‘(n) (see (lb) and (8)). 
n=-Co 

(B.1) 

Let g(n) # 0 for I1 < n < 1, and L = l2 - El + 1 by the FIR filter assumption for g(n). Then 
CumcM)(x(n) 9 x(n - i),x(n - k) 9 ... 7 x(n - k)) # 0 if 

11 < n + k < 12, l1 < n + k - i < 12, l1 < n < l2 

or 
ll_n<k<l,-n, 11-n+idk<12-n+iy 11GnG12 

or 

max{ll - n,lI - n + i} < k < min(1, - n,12 - n + i}, l1 < n < I2 

or 

max{li - 12,11 - I2 + i} < k < min{12 - 11,12 - II + i) 

or 

max{ -L + 1, -L + 1 + i} G k < min{L - l,L - 1 + i}. (B.2) 

Therefore, Kxxl and Kxx2 (see (22a)) can be chosen such as 

K XXl d max{ -L + 1, -L + 1 + i> (B.3a) 

and 

K XX2 > min{L - l,L - 1 + i>, (B.3b) 

respectively, and the associated &,,(i) is a consistent estimate for c,,(i) when max{ -L + 1, 
-L+l+i}<min(L-l,L-l+i}. When max{-L + 1, -L + 1 + i> > min{L - 1, L - 1 + i}, 

c,,(i) = 0 (since (B.2)) and the associated t&,,(i) does not need to be estimated. 

B.2. Proof of (F2) 

The Mth-order cross cumulant Cum(“)(d(n), x(n - i), x(n - k), . . . ,x(n - k)) used in c&i) (see (16b)) can 
be expressed as 

CumcM’(d(n) 9 x(n - i) 7 x(n - k), . . . ,x(n - k)) 

= CumtM’ ( 5 h( j)x,(n - j), xf(n - i), xf(n - k) , . . . , xf(n - k)) (see (A2) and (2b)) 
j=-m 



C.-C. Feng, C.-Y. Chi / Signal Processing 54 (1996) 23-48 45 

= $J h(j)*Cum(“) (xk + k --.0,x& + k - 0,x,(u), . . ..x&)) 
j=-m 

= f h(j)* yy f' g(n + k -j)g(n + k- i)g”-“(n) (see(lb) and (8)). j=-cr, n=-OZ 1 (B.4) 

Then, Cum(“)(d(n), x(n - i), x(n - k), . . . ,x(n - k)) # 0 if 

LI d j < L2, l1 < n + k -j < 12, 1, Q n + k - i < 12, l1 < n Q l2 

or 
Li<j<L2, 11--n+j<k<12-n+j, l,--n+i<k<l,-n+i, l,<n<l, 

or 

LrGj<Lz, max{h-n+j,l,-n+i}<kkmin{12-n+j,&-n+i}, lI<n<12 

or 
Lo <j Q L2, max{lr - l2 + j,l, - l2 + i> < k < min(l, - 11 + j,h - 11 + i> 

or 

max(1, - l2 + L1,ll - l2 + i} 6 k 6 min{12 - II + L2,12 - l1 + i} 

or 
max{-L + 1 + L1, -L + 1 + i> <k < min(L - 1 + L2,L - 1 + i}. (B.5) 

In other words, Kdxl and KdxZ (see (22b)) can be chosen such as 

Kdxl<max{-L+l+L1,-L+l+i) (B.6a) 

and 
KdxZ > min{L - 1 + L2,L - 1 + i}, (B.6b) 

respectively, and the associated e&i) is a consistent estimate for c&i) when max { - L + 1 + L1, -L + 1 + i} < 
min{L - 1 + Lz, L - 1 + i}. Again, the associated t&i) does not need to be estimated since c&i) = 0 when 
maxi-L + 1 + L1, -L+l+i}>min(L-l+L,,L-l+i}(see(B.5)). 0 

Appendix C. Proof of Eq. (25) 

C,,(w) = f c,,(i)e-j”’ 
is-m 

m m 

= Cb Cum(“)@(n), x(n - i), x(n - k), . . . , x(n - k)) e-j”’ (see (16a)) 
i=-m k=-4) 1 = +f_ k,fm [~h$md4g(n - ikF2(n - k)]epjwi (see (A2), (lb) and (8)) 

= yM 
[ 

f gM-2 

k=-a, 
OV]~njmg@O[ i;iipg(n-W’mi] 

= yMGM_,(0). 2 g(n) f g(l)e-j”‘“-‘) 1 (by letting 1 = n - i) 
II=-CC 1=-m 
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= YMGM-~O). [ .j, &W’““] . [ f dWaz] 
I=-m 

= yMGM _ 2(O). G1 (0) * G:(w) (‘*’ denotes complex conjugation) 

= YM~M-AWW~I~. q 

Appendix D. Proof of Theorem 3 

Let 

yi(n) = Xp(n) * hi(n) = U(n) *“hi(n) 

for i = 1,2, . . . , m, where 

“hi(n) P g(n) * hi(n) (see (lb)) 

(D-1) 

(D.2) 

D.1. Proof of Eq. (26) 

Cum ‘“‘(yl(n + kl),y,(n + kz),...,y,(n + k,),xdn + k,+l),...,xdn + km+,)) 

k f g”-Yk+l ] n=_03 ) - t Ihl(n + k&n + k+“h,(n + k,) 
lR+1=-m 

= Y&Y-~(O) 
. Ym 

Ym 
f “hl(n + k&(n + k,) ..%,(n + k,) 

n=-U2 1 
= ~dh-m(O) .Cum(‘“‘(y,(n + k,),y,(n + k,), . . . ,y,,,(n + k,)) (see (D.1) and (8)). 

Ym 

Therefore, we have completed the proof of Eq. (26). 

0.2. Proof of Eq. (2 7) 

‘“‘(yl(n + kl),y,(n + k,), . . ..y.(n + k,),xdn + k,+d, .-.,xdn + kv)) 

. exp 
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= f . . . g [YH fj %&I+ kJ&(n+ kz)Ji& + k,) 
km+,=-m kM=-m II=-cc 

1 I M I 

-_i 1 Wki (see (D.l), (lb) and (8)) 
i=m+ 1 

5 g(n + ki)e-jwik’ i=m+ 1 
k,=-m 3 

= yM f “hl(n + kl)“hz(n + k,) ~-*&,&I + km)* fi Gl(wi)@+” 
n=-CC i=m+l 

= yM nz~m%l(n + kl)“h2(n + k,)..-“h,(n + km).i=k+l GI(~ (see CEnr+lWi =O) 

YMi=i+l Gl(wi) 
= . . [ym f “h&t + k#-&(n + k+&,,(n + km,)] 

Ym L “=-co -I 

YM fi Gl(W) 
i=m+l 

= -Cum(“Yyl(n + kd,M + 4 ,‘--, y,(n + k,)) (see (D.1) and (8)). 0 
Ym 
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